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Abstract Intergranular failure in metallic materials rep-
resents a multiscale damage mechanism: some feature
of the material microstructure triggers the separation of
grain boundaries on the microscale, but the intergranu-
lar fractures develop into long cracks on the macroscale.
This work develops a multiscale model of grain bound-
ary damage for modeling intergranular delamination –
a failure of one particular family of grain boundaries
sharing a common normal direction. The key feature of
the model is a physically-consistent and mesh indepen-
dent, multiscale scheme that homogenizes damage at
many grain boundaries on the microscale into a single
damage parameter on the macroscale to characterize
material failure across a plane. The specific application
of the damage framework developed here considers de-
lamination failure in modern Al-Li alloys. However, the
framework may be readily applied to other metals or
composites and to other non-delamination interface ge-
ometries – for example, multiple populations of material
interfaces with different geometric characteristics.
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1 Introduction

Intergranular fracture affects many structural metal al-
loys. Assessment of the safety and reliability of struc-
tures susceptible to intergranular failure requires a method
to predict the initiation and growth of damage on grain
boundaries. Several factors promote crack initiation on
grain boundaries:

1. At sufficiently high temperatures the connected net-
work of grain boundaries diffuses lattice vacancies
into growing voids [9, 13].

2. The network of grain boundaries accelerates the spread
of corrosion and other detrimental environmental
factors including hydrogen and radiation [3, 36, 49].

3. During processing, impurities, second phases, and
inclusions segregate to the grain boundaries [63].

4. In nanocrystalline materials, grain boundary sliding
and partial dislocation motion may initiate cracking
[15, 41].

5. The mechanics of the grain interface promotes the
plastic growth of voids [37, 39].

Some failure mechanisms overlap more than one cate-
gory. For example, voids often initiate at inclusions and
then grow by creep-induced diffusion [42, 43].

Detailed modeling of intergranular failure in a fi-
nite element simulation requires the resolution of each
individual grain and a fine discretization near grain
boundaries to capture the strains and stresses leading
to material separation. As the physical size of the model
increases, a detailed discretization of individual grains
becomes computationally intractable.

Multiscale methods and homogenization techniques
incorporate microstructural information into a macro-
scale simulation. These methods determine the mac-
roscale response of a point in a continuum from the
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response of a representative microstructure for the ma-
terial at that point [32]. Classical homogenizations treat
the macroscale material as a media with undetermined
material coefficients to be calculated from microstruc-
tural information. Examples include the Voigt [62] and
Reuss [45] bounds, self-consistent techniques [40], and
Mori-Tanaka methods [50]. These classical homogeniza-
tions describe the response of the material by assuming
some microstructural geometry – typically ellipsoidal
inclusions. Multiscale methods determine the full be-
havior of a marcoscale material point from the micro-
scale response – including the effect of plasticity, micro-
cracking, and detailed microstructural geometry. These
methods typically determine the response of the micro-
scale by solving an additional boundary value problem
(BVP) over a representative volume element (RVE) and
extending the microscale response to the macroscale
through a homogenization theory. Frequently, they ap-
ply asymptotic homogenization (see, for example [19]),
which assumes scale separation and microstructural pe-
riodicity. Special techniques, such as the Voroni cell fi-
nite element method (VCFEM) by Ghosh and cowork-
ers solve the microscale BVP for a variety of complex
microstructures, including damaged RVEs [20–23, 35].
Because each macroscale material point solves the RVE
problem, recent work develops efficient microscale solu-
tion techniques [16–18] or reduces the complexity of the
microscale problem in non-critical regions [24].

This work develops a multiscale model for inter-
granular damage. A physically based crystal plasticity
model simulates the deformation of individual grains
on the microscale [34, 38]. A simplified compatibility
/ equilibrium model, similar to one developed by Ev-
ers et al. [14], ties the response of two grains and cal-
culates the intergranular stresses and strains. In turn,
this intergranular response drives a microscale damage
index representing the degree of grain boundary sepa-
ration – from a perfect interfacial bond to complete in-
terface separation. Geometric assumptions connect av-
erage grain size to element size and homogenize a col-
lection of index values representing intergranular dam-
age into a macroscale measure of damage. The dam-
age model applies this macroscale damage index to the
stress/strain response of a conventional, macroscale fi-
nite element material model through planar projections
– essentially extending the smeared cracking method
[44] to nonlinear, large deformation material models.
Stiffness degradation methods, e.g. the smeared crack-
ing method, have a long history [31] of successfully
modeling failure in a wide range of materials from rein-
forced concrete [44] to sea ice [25]. The homogenization
process compares the length scale of the grains to the
length scale of the finite element and scales the damage

to failure by the element size to eliminate the mesh de-
pendence of the smeared cracking method (see Baz̆ant
and Lin [5]).

While this damage model could represent a vari-
ety of intergranular failure mechanisms, this work ap-
plies the framework to delamination in Al-Li alloys. De-
lamination is an intergranular failure mechanism that
develops concurrently with the the growth of primary,
transgranular cracks [11, 54]. Al-Li alloys are lighter,
stronger, and generally more fracture resistant than
conventional aerospace aluminums, but the difficulty
of predicting the development of delaminations hin-
ders their application [47]. Fractography by Richie et al.
[55–61, 64] indicates void-growth on grain boundaries
triggers delamination failure. Experiments [6, 10, 52]
suggest that delamination typically develops along cer-
tain favored grain boundaries. These boundaries sepa-
rate soft/stiff orientation pairs – one grain deforms at
low stress with large plastic strains and the neighboring
grain deforms at high stress with small plastic strains.

Working with detailed crystal plasticity models of
grain boundaries ahead of a long primary crack, our pre-
vious work concludes that these soft/stiff grain bound-
aries develop high mean stresses as a consequence of
the interface mechanics of two adjacent single crystal
grains – not as a result of any particular material fea-
ture [37, 39] . These elevated mean stresses, coupled
with large plastic deformations at the boundary, drive
void growth, leading to delamination.

Figure 1 shows an image of an EBSD experiment,
conducted on a post-delamination M(T) fracture speci-
men [6]. Different colors in the image indicate different
grain orientations. The figure shows a pancake-shaped
grain geometry, typical for a rolled, unrecrystallized Al-
Li plate. The delamination crack grows intergranularly,
occasionally stepping across one wide grain boundary
to another. Two directions describe standard experi-
mental configurations – the direction of loading and
the direction of primary crack advance. Figure 2 shows
these configurations, relative to the standard rolling co-
ordinates. The geometry of delamination divides these
six standard configurations into three groups, shown in
the figure. Each of the three different groups develops
different types of delamination cracks, indicated with
thin lines. The different behavior of each configuration
results solely from the position of the grains relative to
the primary crack – delaminations always develop in
the L− T plane, normal to the S-direction.

Based on these observations, the specific implemen-
tation of the damage model developed in this work rep-
resents microscale, intergranular damage with a dam-
age index based on the Rice-Tracey parameter for plas-
tic void-growth [46]. The bicrystal interface model re-
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Fig. 1 EBSD image from a fracture test of a M(T) specimen. Image focuses on a single arrestor delamination, extending from the
primary crack. Colors indicate different grain orientations. Figure reproduced from Beaudoin et al. [6].

produces the elevated mean stresses and plastic strains
that accumulate on soft/stiff Al-Li grain boundaries.
The geometric assumptions underlying the damage ho-
mogenization treat the grains as laminar stacks of thin,
pancake-shaped hexahedra, with separation potentially
occurring along planes normal to the S-direction. The
damage model reproduces key features of behavior in
Al-Li – delamination initiation toughness, growth di-
rection, and interaction with a primary crack. While
the particular example provided here represents delam-
ination in Al-Li, the same implementation could also
represent other metal alloys that delaminate with sim-
ilar mechanisms, including 3CR12 and X70 steel [27,
33] and conventional 7000-series aluminums [48]. The
framework could also represent intergranular failure in
other materials by changing (1) the microscale damage
index to represent the physics of the failure mechanism
and (2) the geometric assumptions of grain shape and
failure plane orientation to match the microstructure of
the material.

The presentation here is organized as follows. Sec-
tion 2 develops the components of the damage model:
the compatibility/equilibrium grain boundary model,
the Rice-Tracey damage index, the geometric assump-
tions to homogenize microscale damage to the macro-
scale, and the projection matrices that apply this dam-
age to a particular failure plane. Section 3 describes
verification examples for the grain boundary model and
the planar damage projections. Section 4 applies the
damage model to study delamination in Al-Li. Section
5 summarizes the conclusions of the work and discusses
future developments and applications of the intergran-
ular damage model.
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Fig. 2 Standard series of delamination configurations, relative to
the standard rolling coordinate system LTS. Fine lines indicate
the orientation of elongated L− T grain boundaries.

2 Bicrystal interface damage model

At a minimum, a model for intergranular damage must
include the following components:

1. A model to predict the interface stresses along grain
boundaries;

2. A damage index to capture the microscale damage
mechanism;

3. A homogenization technique connecting microscale
and macroscale damage;

4. The macro-constitutive response of the material.

The damage model developed here fulfills each of these
requirements:
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Fig. 3 Bicrystal model – coordinate system normal to the in-
terface plane. The model enforces requirements of stress equilib-
rium, strain compatibility, and an average Taylor constraint with
respect to εmacro on the planar interface. Grain constitutive re-
sponse is simulated with crystal plasticity.

1. An interface model based on strain compatibility
and stress equilibrium to predict the development of
interface stresses and strains on a bicrystal bound-
ary;

2. A damage index based on the approximate Rice-
Tracey parameter to quantify the plastic growth of
voids on a grain boundary;

3. A homogenization that translates grain boundary
damage on the microscale to planar damage on the
macroscale by relating the size of the finite element
to the typical grain size of the material;

4. A method for applying planar damage to a finite
element model.

The following section describes each of these compo-
nents in detail.

2.1 Grain boundary response

2.1.1 Small strains

Our previous work [37, 39] on Al-Li represents a se-
ries of grain boundaries under the loading generated
by a long primary crack with detailed crystal plastic-
ity finite element models (CPFEM). These models re-
veal the development of stresses and plastic strains on
the grain boundaries leading to void-growth and de-
lamination cracking. However, they are computation-
ally expensive – requiring thousands of finite elements

per grain and > 106 of degrees of freedom total. In a
previous paper [39], we proposed the outline of a simpli-
fied grain boundary model that considers only interface
equilibrium and compatibility. Such a model has lower
fidelity compared to the detailed CPFEM simulations,
but reduces the computational work required to com-
pute the intergranular stresses and strains. This section
develops such a reduced model of a grain boundary – a
model that considers only the interface of two grains in
isolation. The model shares features with a homogeniza-
tion technique developed by Evers et al. [14], which en-
forces Hadamard compatibility and stress equilibrium
in a large deformation framework. This section adopts a
small strain, incremental scheme based on similar com-
patibility and equilibrium requirements then extends
the model to finite strains via the Green-Naghdi [26]
objective rate integrated in an unrotated intermediate
configuration.

In the interface model, crystal plasticity simulates
the constitutive response of individual grains. A previ-
ous work [38] describes the details of the adopted crystal
plasticity formulation. In small strains, the CP model
takes an increment of strain and returns the updated
stress. For large strains, the model takes an increment
of unrotated strain over tn → tn+1 and returns the un-
rotated Cauchy stress at tn+1. A similar procedure for
incremental stress integration requires an incremental
interface model. The CP material model also computes
the lattice orientation update for each grain and tracks
the evolution of internal variables.

Figure 3 illustrates the interface model. The two
grains have infinite extent in the boundary plane (t−s)
and zero thickness normal to the boundary interface
(n). The model imposes three conditions on the mate-
rial response at this idealized, planar interface:

1. Stress equilibrium: σ(1)
nn = σ

(2)
nn , σ

(1)
sn = σ

(2)
sn , and

σ
(1)
tn = σ

(2)
tn .

2. Strain compatibility: ε(1)
st = ε

(2)
st , ε

(1)
tt = ε

(2)
tt , and

ε
(1)
ss = ε

(2)
ss .

3. Average Taylor constraint: εmacro = 1
2

(
ε(1) + ε(2)

)
.

These equations describe the constraints in the coor-
dinate system shown in Fig. 3. However, the actual
implementation must accommodate interfaces with an
arbitrary normal vector and enforce the constraints in-
crementally.

To handle interfaces of arbitrary orientation, the
model takes three orthogonal unit vectors as param-
eters: n (normal to the interface) and s and t (in the
interface plane). The model projects the finite element
stress and strain tensors into this coordinate system,
performs the stress update, and returns a stress in the
original coordinates. Projection matrices carry out these
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three operations simultaneously for each constraint. These
matrices operate on the Voigt notation equivalents of
the symmetric stress and strain tensors. In this form,
the constraints are:

1. Stress equilibrium:Pe3×6

(
σ

(1)
n+1 − σ

(2)
n+1

)
6×1

= 03×1.

2. Strain compatibility:Pc3×6

(
∆ε

(1)
n+1 −∆ε

(2)
n+1

)
6×1

=

03×1.
3. Average Taylor constraint:

(
∆εmacron+1

)
6×1

= 1
2

(
∆ε

(1)
n+1 + ∆ε

(2)
n+1

)
6×1

.

The appendix lists the components of the projection
tensors Pe3×6 and Pc3×6 in terms of the orthogonal coor-
dinate system (n, s, t) and describes the Voigt notation
adopted for this work.

The incremental stress update for the crystal plas-
ticity material model is a nonlinear function coupling
stress at step n + 1 to the strain increment over the
step:

σ
(1)
n+1 = σ

(1)
n+1

(
∆ε

(1)
n+1

)
σ

(2)
n+1 = σ

(2)
n+1

(
∆ε

(2)
n+1

)
.

The CP material model also provides the consistent lin-
earization of this nonlinear function, the algorithmic
tangent:

A
(1)
n+1 =

∂σ
(1)
n+1

∂∆ε
(1)
n+1

A
(2)
n+1 =

∂σ
(2)
n+1

∂∆ε
(2)
n+1

.

The incremental constraints define a set of nonlinear
equations:

Rn+1 =
Pe3×6

(
σ

(1)
n+1

(
∆ε

(1)
n+1

)
− σ(2)

n+1

(
∆ε

(1)
n+1

))
6×1

Pc3×6

(
∆ε

(1)
n+1 −∆ε

(2)
n+1

)
6×1

1
2

(
∆ε

(1)
n+1 + ∆ε

(2)
n+1

)
6×1
−
(
∆εmacron+1

)
6×1


12×1

= 012×1. (1)

The Jacobian of this system with respect to the vector
of unknowns:

xn+1 =


(

∆ε
(1)
n+1

)
6×1(

∆ε
(2)
n+1

)
6×1


12×1

is:

Jn+1 =
(
Pe3×6A

(1)
n+1

)
3×6
−
(
Pe3×6A

(2)
n+1

)
3×6(

Pc3×6I6×6

)
3×6

−
(
Pc3×6I6×6

)
3×6

1
2I6×6

1
2I6×6


12×12

. (2)

The Newton-Raphson method solves the residual sys-
tem defined in Eq. 1 using the Jacobian in Eq. 2. Al-
gorithm 1 describes the complete process. A standard
Newton-Raphson algorithm often diverges – a back-
tracking line search parameter improves convergence
of the solution. A converged solution typically requires
fewer than 10 iterations. The model takes an incre-
ment of strain on the macroscale (∆εmacron+1 ) and finds
the microscale bicrystal strain increments ∆ε

(1)
n+1 and

∆ε
(2)
n+1 that satisfy the three requirements. In the pro-

cess of computing these strains, the model also finds
the updated bicrystal stresses σ(1)

n+1 and σ(2)
n+1 and the

associated state variables.
Compared to detailed finite element models of indi-

vidual grains, this interface model reduces greatly the
computational effort required to simulate the response
of a bicrystal. Updating of the response for a single
bicrystal pair thus requires the solution of a system of
12, coupled nonlinear equations – much less computa-
tionally expensive than solving a finite element model
resolving the grain behavior, which might contain thou-
sands of elements. Disadvantages of this reduced model
are the simplifying assumptions, which neglect: (1) the
bulk response of the grains, (2) boundary effects, (3) the
influence of more than one neighboring grain, (4) the
effects of non-planar grain boundaries, (5) and triple
points.

2.1.2 Large strains and lattice rotations

The CP material model tracks the rotation of the crys-
tal lattice with an exponential integrator to maintain
orthogonality of the elastic rotation tensor [38]. In large
deformations, the CP material model works with incre-
ments of corotational strain:

∆dn+1 = RT
n+1∆Dn+1Rn+1

and corotational Cauchy stress:

tn+1 = RT
n+1σn+1Rn+1

with ∆Dn+1 = Dn+1∆tn+1, the integrated deforma-
tion rate tensor, and Rn+1 the total rotational compo-
nent of the deformation gradient Fn+1 = Rn+1Un+1.



6 M. C. Messner, A. J. Beaudoin, and R. H. Dodds, Jr.

Algorithm 1 The interface compatibility/equilibrium model.
Input: ∆εmacro

n+1 , crystal states at time tn.

Form the unknown vector x
(0)
n+1 =

[
∆ε(1)n

∆ε(2)n

]
.

Compute R
(0)
n+1

While
∥∥∥R(i)

n+1

∥∥∥ > tol:

Compute the Jacobian J
(i)
n+1 with Eq. 2.

Solve the system −J(i)
n+14x

(i)
n+1 = R

(i)
n+1.

Update the unknown strains: x(i+1)
n+1 = x

(i)
n+1 +4x

(i)
n+1

Compute R
(i+1)
n+1 with Eq. 1.

i+ 1→ i
Update the crystal histories to state n+ 1.

Return the strains

[
∆ε(1)n+1

∆ε(2)n+1

]
= x

(i+1)
n+1 and the stresses σ(1)

n+1 and σ(1)
n+1 (computed while calculating R

(i+1)
n+1 ).

We assume the orthogonal coordinate system aligned
with the boundary evolves with the (total) material
point motion:

nn+1 = Rn+1n0

sn+1 = Rn+1s0

tn+1 = Rn+1t0.

With this assumption the equilibrium requirement at
large deformations becomes:

(
σ

(1)
n+1 − σ

(1)
n+1

)
· nn+1 =(

Rn+1t
(1)
n+1R

T
n+1 −Rn+1t

(2)
n+1R

T
n+1

)
·Rn+1nn+1 = 0

Rn+1

(
t
(1)
n+1 − t

(2)
n+1

)
·nn+1 =

(
t
(1)
n+1 − t

(2)
n+1

)
·nn+1 = 0.

That is, imposition of the equilibrium requirement on
the unrotated Cauchy stress is equivalent to imposing
equilibrium on the Cauchy stress, provided the bound-
ary normal evolves with the total material rotation.
Similar derivations follow for the other two constraints.

Therefore, extending the model described in Section
2.1.1 to large deformations simply requires substituting
the unrotated Cauchy stress for the Cauchy stress and
the unrotated strain increment for the strain increment.
In this form, the model takes an increment of unrotated
macroscopic strain and returns the increments of unro-
tated microscopic strain and the unrotated microscopic
stresses. The finite element framework maintains the
interpretation of the stresses and strain as corotational
quantities and preforms additional rotations as required
to convert to the current configuration.

2.2 Damage index based on the Rice-Tracey parameter

Void growth on grain boundaries triggers delamination
failure in Al-Li. The interface model in the previous sec-
tion provides the mechanical response (stresses/strains)
on the boundary. This mechanical response drives void-
growth – approximated in this work with a damage
index based on the Rice-Tracey parameter. The Rice-
Tracey parameter [46] is the logarithm of the plastic
void-growth ratio of a single void subjected to a mean
stress, effective stress, and equivalent plastic strain. The
differential equation:

∂ log (r/r0)

∂ε̄p
= exp

(
1.5σm
σe

)
(3)

log (r/r0)|ε̄p=0 = 0

extends the Rice and Tracey solution to a hardening
material [12]. The void-growth ratio does not satisfy
the requirement of a continuum damage index, which
should vary smoothly from 0 to 1. The present model
represents damage with the function:

D = tanh

(
log (r/r0)

α

)
with α a material constant. This function does range
smoothly from 0 to an asymptote at D = 1. The model
tracks the damage parameter by evolving the differen-
tial equation:

∂D

∂ε̄p
=

exp
(

1.5σm

σe

)
/α

cosh (log (r/r0) /α)
2 (4)

D|ε̄p=0 = 0

based on the stresses and plastic strains at a bicrys-
tal interface. Specifically, the model tracks the damage
index in each of the two grains at the interface and
uses the maximum value from the two grains as the in-
terface damage index. Because the damage function is
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asymptotic at D = 1, the model cuts off the damage
evolution:

Dn+1 =

{
Dn+1 Dn+1 < Dcut

1 Dn+1 ≥ Dcut

.

In this work, Dcut = 0.95. This cutoff prevents un-
necessary interface stress calculations when a bicrys-
tal pair has separated. After D = 1, the model marks
the bicrystal as failed and no longer computes stress or
damage updates for that particular grain pair.

These equations describe damage evolution either
with small strains or with finite strains in the current
configuration. At large deformations, the bicrystal in-
terface model returns unrotated stresses and strains,
as described above. However, because Eqs. 3 and 4 are
functions only of stress and strain invariants, the calcu-
lation can occur equivalently in the unrotated configu-
ration (i.e. the damage index is rotationally invariant).
The process for updating the damage index therefore
remains the same for both small and large strains.

The present formulation does not depend on the
choice of a specific intergranular damage index. An-
other damage index, such as the Gurson-Tvergaard-
Needleman model [28, 53], could also represent void-
growth on the grain boundaries. Furthermore, nothing
restricts the formulation to such ductile failure mecha-
nisms. Other damage indexes, driven by the intergran-
ular stresses and strains, could represent intergranular
failure.

2.3 Homogenizing damage to the macroscale

The interface model, combined with the void-growth in-
dex, describes the development of damage between two
grains of particular orientations embedded in a mac-
roscale model. The multiscale damage model must ho-
mogenize this microscale damage and incorporate the
effects of the macroscale damage on the macroscale
structural response. Figure 4 describes the geometri-
cal assumptions to link damage on the microscale with
damage on the macroscale. These geometrical assump-
tions also ensure the model remains mesh-size indepen-
dent, essentially by scaling the macroscale damage-to-
failure based on the element size.

The process to calculate and incorporate damage
has three parts, each performed at every load step, at
each material point in a finite element model:

1. Calculate the crystal interface stresses, strains, and
damage for nstacks “stacks” of bicrystals, each with
nper bicrystals per stack. Generate microscale dam-
age index values for each bicrystal.

2. A homogenization scheme converts the microscale
damage index values at each bicrystal to one mac-
roscale damage index for the material point.

3. Apply this macroscale damage on a plane in the
finite element model.

The element size and grain size determine the number
of grain stacks and number of bicrystals in a stack. ln,
ls, and lt are the lengths of the longest possible lines
fitting inside an element in the n, s, and t directions.
tn, ts, and tt are the average grain sizes in the same
directions. Then, based on simple geometric arguments:

nstacks =

(
ls
ts

)(
lt
tt

)
,

nper =
ln

2tn
.

These numbers (rounded to the nearest integer) set the
total number of crystals and bicrystal interfaces simu-
lated at each material point – approximately equal to
the number of pancake-shaped grains that fit inside the
finite element containing the material point. This ar-
rangement of grains also guides the homogenization to
average microscale damage at each interface into mac-
roscale damage at a material point. Recall that the pre-
vious section defined the damage at a bicrystal pair as
the maximum value of damage in either crystal. Now
we define the damage of a bicrystal stack as the maxi-
mum of the damage in each of the bicrystals in a stack.
That is:

Dj =
nper

max
i=1
{Di} .

Then define macroscale damage at a material point as:

Dmacro =

nstacks∑
j=1

Dj/nstacks (5)

That is, macroscale damage is the average damage in
all the grain stacks at a material point. Since Dj ∈ [0, 1]

then D ∈ [0, 1] and D is an appropriate damage index.
This damage index implies a material point delaminates
fully only when all of its grain stacks fail completely.

This approach for damage homogenization approx-
imates the effect of delamination across a volume com-
posed of pancake-shaped grains. Failure of a material
point is taken as the inability to transmit load applied
in an arbitrary direction. With this definition, a grain
stack fails when the first grain boundary in the stack
fails. Therefore, damage within a stack of grains is the
maximum damage in all the bicrystals in the stack.
Considering a collection of grain stacks tiled across a
planar area, the collection of stacks fails only when all
of the stacks fail – generating a complete failure path,
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Model Element size

Grain stacksGrain size

Fig. 4 Geometrical assumptions that provide the concept for the multi-scale homogenization technique upscaling microscale damage
to macroscale material points.

representing a delamination crack, across the entire col-
lection. The present model approximates this condition
by taking the average of damage across the stacks. In
the actual material (see Fig. 1), the failed grain bound-
aries are not in a single s − t plane. Rather, the grow-
ing delamination crack jumps from one grain bound-
ary to another, in a stair-step fashion. As a simplifying
assumption, the present model neglects the energy re-
quired to propagate these stair-step jumps.

The damage homogenization technique retains ap-
proximate mesh-size independence. Arranging Eq. 5 at
failure (Dmacro = 1):

nstacks =

nstacks∑
j=1

Dj .

That is, the total damage accumulated across all grain
stacks at failure increases as the number of grain stacks,
and hence element size, increases. This reflects the ge-
ometry of the grain clusters – larger elements contain
more grain stacks than smaller elements. Baz̆ant and
Lin [5] developed a similar technique to alleviate mesh-
dependence of the smeared crack model for reinforced
concrete – they scaled the fracture energy for the ma-
terial with the element size.

Finally, the material point damage D on the mac-
roscale does not represent isotropic failure of the mate-
rial. Rather, the index represents damage localized to
the s−t plane, with normal vector n. The model applies
damage to the macroscale response through a projec-
tion matrix, which degrades the part of the stress tensor
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lying on a plane with normal direction n and transverse
directions s and t. If σud is the undamaged macroscale
stress, the damaged stress is:

σmacro =
(
I6×6 −DPD6×6

)
σud

where the projection tensor PD6×6, described in the ap-
pendix, takes the projection of a stress tensor onto the
plane with normal n. A conventional finite element ma-
terial model provides the undamaged macroscale con-
stitutive response σud – in this work, an isotropic von
Mises plasticity model.

A few additional details remain. With the assump-
tion that the failure plane evolves with the total ma-
terial rotation R, the unmodified damage projection
correctly degrades stresses in the corotated intermedi-
ate configuration at large strains. As before, the large-
strain, corotational stress update is identical to the small-
strain stress update. Secondly, the new algorithmic tan-
gent of the macroscale stress response, including dam-
age, is:
∂tmacron+1

∂∆dn+1
= − ∂Dn+1

∂∆dn+1
PD6×6t

ud
n+1+

(
I6×6 −DPD6×6

)
Aud
n+1

with Aud
n+1 the algorithmic tangent of the undamaged

macroscale stress update function – returned from the
standard finite element material model. The term ∂Dn+1

∂∆dn+1

changes depending on the particular choice of a damage
index. To keep the damage index modular, the model
makes one final assumption:

tmacron+1 =
(
I6×6 −DnP

D
6×6

)
tudn+1 (6)

with the algorithmic tangent:

Amacro
n+1 =

(
I6×6 −DnP

D
6×6

)
Aud
n+1. (7)

That is, the integration becomes quasi-implicit: implicit
for the stress update but explicit for the damage in-
dex. Notice the projection matrix PD6×6 is asymmet-
ric – requiring an asymmetric assembly algorithm and
an asymmetric linear solver to achieve quadratic con-
vergence when solving the global finite element nonlin-
ear force equations. Algorithm 2 describes the complete
process.

The quasi-implicit integration procedure simplifies
the stress update procedure. The model calculates the
undamaged macroscale stress and algorithmic tangent
using a standard finite element material model and ad-
justs the stress and tangent to reflect the damage in-
dex from the previous step using Eqs. 6 and 7. This
decoupling limits the global step size. The damage in-
dex integration now lags the macroscale stress update,
possibly requiring small load steps to achieve good ac-
curacy. However, most simulations require small steps
anyway to capture rapidly evolving damage at the grain
boundaries.

2.4 Material parameters

Experimental data may be used to calibrate most of the
model parameters. For example, macroscale standard
tension and/or shear experiments enable fitting both
the macroscale and microscale (crystal plasticity) stress
response. Fracture toughness data aids in estimating
the damage parameter α. Physical measurements pro-
vide the average grain thicknesses ts, tl, and tt. The sim-
ulations in Section 4 provide an example using experi-
mental data to calibrate the damage model. However,
determining the crystallographic orientations of each
grain represented at a material point is not straightfor-
ward. The grain orientations should represent the tex-
ture of the simulated material. Ideally, EBSD or simi-
lar measurements provide the actual orientations of the
grains in the simulated region. However, this approach
limits the predictive capabilities of the method.

A compromise retains a realistic texture but does
not require a priori knowledge of the grain structure
in a particular component. This option chooses grain
orientations randomly from an orientation distribution
function, or equivalently, from an experimentally mea-
sured texture. With this method, model results become
non-deterministic – multiple simulations with the same
properties yield different results for different, randomly
selected, grain orientations at each material point. Con-
clusions drawn from the simulation results must reflect
this variance.

3 Verification and model response

We implemented the damage model in WARP3D – an
open-source, large deformation finite element software
package (https://code.google.com/p/warp3d/). A pre-
vious work describes verification of the crystal plastic-
ity formulation and algorithms to simulate the response
of individual grains [38]. Von Mises plasticity provides
the macroscale material model. However, any plastic-
ity formulation could provide the macroscale response,
including anisotropic models like Barlat et al. [4] and
homogenized crystal plasticity. In addition to these ma-
terial models, the damage formulation includes three
further components: (1) the bicrystal interface model,
(2) the damage index based on the Rice-Tracey param-
eter, and (3) the projection matrices to map macroscale
damage index D onto a plane. The Rice-Tracey param-
eter approximately captures the physics of void-growth
and the α parameter enables calibration of the damage
model to experimental data (see next section); a specific
verification of the damage index is not required. This
section provides two simulations to verify the remaining
aspects of the model.
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Algorithm 2 Complete stress and damage update algorithm.
Input: ∆εmacro

n+1 , macroscale stress state at tn, macroscale damage at tn, crystal states at time tn, crystal damage at tn.

1. Update crystal stresses, states to tn+1 with Algorithm 1.
2. Calculate crystal damage for each bicrystal pair with Eq. 4.
3. Calculate the macroscale damage at the next step, Dn+1, with the procedure in Section 2.3.
4. Calculate the undamaged macroscale stress, algorithmic tangent, and material history with a standard FE material model.
5. Calculate the damaged stress and tangent with Eqs. 6 and 7.

Return: σmacro
n+1 , Amacro

n+1 , Dn+1, updated crystal history and damage, updated macroscale material history.

Bs

S

ε

0.5ε

0.5ε

x

z
y

Bs

S

Single bicrystal Finite element model

ε

0.5ε

0.5ε

Fig. 5 Setup for the bicrystal verification analysis. Same displacement-controlled loading applied to both models.

3.1 Bicrystal interface response

Figure 5 shows the setup for verification of the bicrystal
interface model. The verification compares the stresses
at a grain boundary simulated with two different tech-
niques: the compatibility/equilibrium interface model
and a full finite element simulation. Both models rep-
resent a single bicrystal pair: a Bs (Bunge Euler angles
φ1 = 35◦, Θ = 45◦, φ2 = 0◦)/ S ( φ1 = 59◦, Θ = 29◦,
φ2 = 63◦) pair with interface normal n =

[
1 1 1

]
/
√

3.
The finite element simulation biases most of the mesh
refinement to the grain boundary. The same loading is
applied to each model in 100 equal load steps.

The reduced model generates a stress tensor for the
Bs grain and a stress tensor for the S grain. The fi-
nite element simulation produces full stress fields over
the grains. Figure 6 compares the mean stress (σm)
calculated by the reduced model to the full field re-
sults of the finite element model. For this comparison,
the FE results are from slices offset h = 0.05 mm from
the grain boundary into the bulk of each grain – near
enough to the boundary to include the effects of the ma-

terial interface. These plots show the relative difference
eσm =

∣∣σsimplem − σFEm (x)
∣∣ /σsimplem .

The results show low relative difference in both grains
in the center of the model, away from the model sur-
faces. Similar results hold for the effective stress σe
and the equivalent plastic strain ε̄p. At the edge of the
model, boundary effects and the actual geometry of the
modeled domain influence strongly the results. Away
from boundary effects and near the interface plane, as-
sumptions of the reduced model better represent the
actual deformation of the material.

3.2 Planar damage projection

Figure 7 shows a single element model for testing the
effects of macroscopic damage. Recall that the model
projects macroscale damage indexD anisotropically onto
the plane of the grain boundary. For the model in Fig.
7, the damage plane has a normal in the y-direction.
The damage parameter should affect the stress compo-
nents forming the traction vector normal to the failure
plane – σyy, σxy, and σzy – leaving the other compo-
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Brass grain S grain

eσm

0.0 0.25 0.5 0.75 1.0 Bs grain

y

x

z

S grain

2h = 0.1 mm

Fig. 6 Difference between the mean stress calculated with the simplified grain boundary model and mean stress results from a detailed
finite element simulation of a bicrystal interface. Finite element results from planar slices h = 0.05 mm offset from the planar grain
boundary into each grain. Difference is near zero at the center of the model, but increases near the model surface.

nents unaffected. This represents a delamination crack
separating the material along the x−z plane, eventually
creating a free surface.

The test applies equal εyy normal strain and γxy
shear strain to the element and imposes symmetry bound-
ary conditions on element faces to prevent rigid body
motion. The macroscale constitutive model is von Mises
plasticity. Under this loading σxx, σyy, and σxy stresses
develop – σyy and σxy from loading and σxx from con-
straint. The model projects damage onto the normal
plane to reduce and eventually eliminate σyy and σxy
as D → 1.

Figure 7 shows the evolution of the three non-zero
stress components with applied strain. The model works
correctly – damage affects σyy and σxy but does not
affect σxx. Similar tests confirm the model correctly
projects damage onto other planes – including planes
with normals not parallel to the model coordinate sys-
tem.

4 Application to 2195 Al-Li

This section applies the damage model to represent de-
lamination fracture in 2195 Al-Li. Tables 1 and 2 sum-
marize tensile and fracture test data from the open lit-

erature. The texture and grain structure of the material
cause both the tensile and fracture properties to depend
on orientation. In particular, splitter configuration (TL
and SL in Fig. 2) specimens have a much lower effective
toughness than divider and arrestor configurations.

Application of the damage model to 2195 Al-Li re-
quires calibration of several components:

1. Determine the texture of the material to select grain
orientations for the bicrystal model. This work sam-
ples orientations randomly from an experimentally
measured textures in a plate sample of 2195 [51].

2. Determine the average grain size of the material –
here using the same EBSD dataset.

3. Fit a finite element material model to the macro-
scale response of the material – here fit the tension
test data in Table 1 to an isotropic von Mises model.

4. Fit the microscale crystal plasticity model to the
microscale (undamaged) material response – this
work fits a Taylor homogenized polycrystal of 500
orientations drawn randomly from the EBSD dataset
to the macroscale tension test data.

5. Determine the damage index parameter α by com-
paring a small-scale-yielding fracture model of a split-
ter configuration to experimental fracture toughness
data from splitter configuration tests.
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Fig. 7 Single element example demonstrating the macroscale planar damage projection. The single element is loaded with displace-
ments to enforce equal strains in the yy normal and xy shear directions and symmetry on three faces to constrain the model. The
interface/failure plane has a normal vector in the y-direction – parallel to the applied loading. When the element completely fails
(D = 1.0 at all Gauss points) the normal stress σyy and shear stress σxy fall to zero, but the transverse normal stress σxx remains
unaffected.

Configuration σY (MPa) σU (MPa) %EL Source
L 574.3 609.5 8.5 [30]
T 550.9 588.8 11.2 “
L 574.3 615.7 10.5 [2]
T 542.6 586.1 10.0 “

45◦ L-T 506.7 553.6 12.3 “
L 510.23, 524.7, 544.0 573.0, 575.0, 586.1 7.0, 8.0, 6.5 [8]
“ 533.7, 514.4, 537.1 582.6, 568.1, 581.2 6.5, 7.8, 8.3 “

Table 1 Uniaxial tension test data for 2195 Al-Li, from a variety of sources in different configurations. Here σY is the room temperature
yield stress, σU is the ultimate tensile strength, and %EL is the percent elongation at failure.

Specimen type Configuration KIc (MPa
√

m) Source
C(T) LS 47.5 [29]

SL 30.2, 32.9 “
LT 49.7 “

M(T) LS 73.71, 70.9, 73.1, 74.9 “
Unknown Splitter 29.6, 25.4, 34.9 [7]
Unknown TL 25.4, 34.9 [8]

Table 2 Room temperature fracture toughness data for 2195 Al-Li in a variety of configurations.

4.1 Fitting of model parameters

The data summarized in Tables 1 and 2 and an ex-
perimentally measured orientation for 2195 Al-Li form
the basis for the model calibration. The macroscale
von Mises plasticity model matches the uniaxial tension
test data summarized in Table 1. The strong texture of
rolled Al-Li causes the tension test data to vary with
material orientation. The parameters for the von Mises

model represent a fit to an average of the data from
all different orientations. Figure 8 shows the fit to the
data and Table 3 summarizes the macroscopic material
model parameters.

The CP model represents the microconstitituve re-
sponse of individual grains. Here the model evolves slip
system hardening with a Voce law following the formu-
lation described in Messner et al. [38]. The CP model
parameters match the response of a homogenized poly-
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Parameter Description Value
E Young’s modulus 78800 MPa
ν Poisson’s ratio 0.33
σY Yield stress 517 MPa

npower Power law hardening coefficient 18.5

Table 3 Material parameters for macroscale von Mises material
model.

CP T
CP L

von Mises

700

600

500

400

300

200

100

0
0 0.02 0.04 0.06 0.08 0.1 0.12

σt (MPa)

εt (mm/mm)

Fig. 8 The fit of the macroscopic von Mises material model and
the homogenized microscale crystal plasticity material model,
both in uniaxial tension loading. The crystal plasticity model
captures the effect of material orientation.

crystal representing 500 random orientations, drawn
from the 2195 texture, to the macroscale uniaxial ten-
sion test data. The homogenized crystal plasticity model
captures the effect of material orientation on the uniax-
ial stress/strain response. Elastic parameters are isotropic
elastic. See Fig. 8 for a comparison to the macroscale
von Mises model and Table 4 for the material parame-
ters.

The small scale yielding (SSY) fracture model shown
in Fig. 9 is adopted to calibrate the microscale damage
index constant α. The SSY model represents a long pri-
mary crack loaded with the Mode I asymptotic crack
front displacements [1]. Small scale yielding conditions
apply: at KIc ≈ 45 MPa

√
m the plastic zone radius ex-

tends to about 1 mm from the crack front – much less
than the in-plane dimensions of a typical test specimen
or manufactured component. Material near the primary
crack front and in the plastic zone undergoes damage
as described above. Outside this region, undamaged von
Mises plasticity represents the material response. The
thickness of the model (B/2 = 5 mm) approximates the
thickness of the C(T) specimen test from Hernquist [29].

Symmetry reduces the modeled region by one-fourth: in
the y- and z-directions.

The SSY model can represent any delamination con-
figuration (see Fig. 2) by changing the vectors n, s, and
t defining the grain coordinate system. For example,
when n =

[
0 1 0

]
(s and t arbitrary unit vectors or-

thogonal to n and each other) the model represents a
crack splitter configuration. In addition to aligning fail-
ure/grain boundary plane, the model must also rotate
the Euler angles representing the texture of the mate-
rial into the new coordinate system. Experiments sug-
gest delamination in the splitter configuration should
supplant transgranular cracking and propagate an ap-
proximately straight primary crack. Figure 10 shows
the damage model correctly reproduces this behavior –
as the load on the model (Kapp

I ) increases, damage de-
velops ahead of the primary crack front on the primary
crack plane. When the damage parameter in an ele-
ment reaches D = 1 that element completely releases
the traction components in the y-direction – thereby
advancing the primary crack front.

Calibration of the damage parameter α requires the
value of α such that primary crack advance in the model
occurs at Kapp

I = Ksplit
Ic , where Ksplit

Ic is the average of
the initiation toughness values in Table 2 for SL and
ST configurations. That is, adjust α until the first row
of elements ahead of the primary crack fails at Kapp

I =

30.5 MPa
√

m. The result of this calibration is α = 0.25.

4.2 Delamination crack growth

Figure 10 shows the damage index D and the corre-
sponding mean stress field for three different configura-
tions: an LS arrestor configuration, a TL divider config-
uration, and a SL splitter configuration. Deep red values
indicate element failure (D = 1.0), blue values represent
undamaged elements. The FE model is identical for all
three simulations – only the specified directions of n, s,
and t vectors and the rotations describing the material
texture in the global coordinates change for each differ-
ent fracture configuration. For comparison, the figure
also shows the mean stress field for an undamaged von
Mises material.

Delamination crack growth patterns shown in Fig.
10 differ for each of the three configurations and match
experimental observations. The following discussion de-
scribes the delaminations that develop in each of the
three configurations and links the type of delamination
growth to its effect on the macroscale stress and strain
fields.
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Fig. 9 This SSY model supports calibration of the damage model parameter α using experimental fracture test data and simulation
of delamination crack growth for three material configurations. Here R = 600 mm and B/2 = 5 mm – matching the C(T) specimen
thickness from [29]. The damage model developed in this work represents the region of material near the primary crack. Outside this
region, an undamaged von Mises plasticity model represents the response.
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Parameter Description Value
E Young’s modulus 78800 MPa
ν Poisson’s ratio 0.33
n Rate sensitivity coefficient 20
θ0 Initial slip system hardening slope 150 MPa
τy Intrinsic slip system strength 190 MPa
τv Maximum amount of slip system hardening 25 MPa
m Voce law power coefficient 1
α Rice-Tracy damage model parameter 0.25

Table 4 Material parameters and values for the microscale crystal plasticity model and the calibrated microscale damage index
coefficient α.

LS (arrestor) TL (divider) SL (splitter)

S

LT

L

TS

L

ST
Primary crack Primary crack Primary crack

D

0.0 0.25 0.5 0.75 1.0

x

yz

σm (MPa)

15012080400

z/B = 0.1

No damage (von Mises)

GBs GBs

(in plane)

GBs

Fig. 10 Amount and direction of delamination crack growth in three standard configurations and the resulting mean stress fields.
Simulations use the calibrated material properties (α = 0.25) and have the same loading (KI = 60.0 MPa

√
m). For each configuration,

the top image shows the value of the damage parameter D, with dark red values indicating complete delamination failure. The lower
row of images shows the mean stress fields on a planar slice through the thickness of the model, near the symmetry plane (z/B = 0.1).
The lowest image shows the mean stress field for an undamaged model.
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Fig. 11 AK-∆a plot showing the crack extension of the arrestor
delamination versus the applied Mode I stress intensity factor.

Arrestor

In the arrestor configuration a comparatively long de-
lamination (greater than 10 grain widths/100 grain thick-
nesses) develops perpendicular to the primary crack
front. Such a perpendicular delamination matches the
crack growth pattern observed in arrestor M(T) tests by
Hernquist [29]. The arrestor delamination propagates
under the substantial σxx stress concentration that de-
velops near the primary crack front.

Figure 11 plots the extension of the arrestor de-
lamination versus the applied Mode I loading. The ar-
restor crack begins to extend well before the primary
crack would advance – Table 2 shows primary crack
growth in arrestor configurations requires at least KI ≈
45 MPa

√
m whereas the figure shows arrestor delamin-

ation growth occuring at KI ≈ 35 MPa
√

m.

The arrestor crack relieves the mean stress concen-
tration near the initial primary crack front but gener-
ates a region of increased mean stress near the new,
additional front at the tip of the delamination. Previ-
ous simulations and experiments also exhibit this stress
rearrangement, reducing the driving stress near the ini-
tial, primary crack front while increasing the stress near
the delamination front. In addition, mean stress in the
model remains elevated along the length of the arrestor
crack, behind the initial primary crack front. These cor-
respond to mean residual stresses expected from crack
advance – only here crack advance occurs perpendicular
to the initial primary crack.

Splitter

In the splitter configuration damage develops ahead of
the primary crack along the initial crack plane. This is
also the crack growth pattern observed in experiments.
The Mode I field of the primary crack drives the splitter
delamination, essentially advancing the primary, trans-
granular crack.

The growing splitter delamination generates a mean
stress field corresponding to the stresses expected from
straight primary crack growth – the stress concentra-
tion advances with the growth of the crack, leaving be-
hind residual stresses in the wake of the crack front.

Divider

In the divider configuration, damage remains localized
near the primary crack front and near the primary crack
plane. Post-failure observations of divider configuration
fracture tests typically show longer divider delamina-
tions segmenting the primary crack plane [2]. The lack
of a growth mechanism for primary, transgranular cracks
in the simulation explains this discrepancy. Divider crack-
ing generally occurs simultaneously with transgranular
crack advance. Divider cracks do not halt or turn the
primary crack (like arrestor configurations) or supplant
transgranular cracking (like splitter configurations). With
an advancing primary crack, damage at the crack front
distributes across the crack plane, thereby generating a
delamination growth pattern similar to the experimen-
tal observations.

The results imply that in thin plate specimens mac-
roscale forces do not drive a divider microcrack. In a
thin plate the magnitude of the through-thickness σzz
stress remains much smaller than the in-plane σxx and
σyy stresses that drive arrestor and splitter cracks. How-
ever, in thicker specimens elevated through-thickness
stresses develop as a consequence of stress triaxiality.
Here the macroscale stress field may propagate a divider
delamination with or without accompanying growth of
the primary crack.

In the divider configuration, the stresses do not change
significantly from the undamaged model. Since damage
remains isolated very near the primary crack front it
does not significantly affect the material away from the
crack. Near the primary crack front damage in the di-
vider configuration lowers the mean stress as the dam-
age projected on the xy plane lowers the σzz normal
stress component.
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The effect of delamination on measured macroscopic
toughness

The reduction in mean stress observed in the arrestor
and, to a lesser extent, divider configurations readily
explains why these geometries have a higher measured
toughness than the splitter configuration. The damage
caused by delaminations reduces the stresses near the
primary crack, lowering the driving force for primary
crack extension. This result, obtained here with the
multiscale damage model in a macroscale simulation,
agrees with our previous simulations on the microscale
with crystal plasticity models for small groups of grains
[37, 39].

The influence of texture on delamination cracking

Figure 10 shows results for a single simulation in each
of the three configurations. Recall that the model se-
lects the crystal orientations of the bicrystal pairs rep-
resented at each material point randomly from an ex-
perimentally measured texture. The particular selec-
tion of orientations, especially near the primary crack
front, affects the predicted extension of delamination
cracks. Figure 12 shows one example of this variability.
The macroscale damage index is shown for three sim-
ulations of splitter configurations at the same far field
loading (KI = 32 MPa

√
m) – essentially showing the

amount of splitter delamination advance along the pri-
mary crack plane. Each simulation predicts a different
amount of crack growth – ranging from 6 to 10 mm.
Fracture tests on 2195 Al-Li also show this variabil-
ity – geometrically identical specimens from the same
plate of material exhibit different amounts of delamin-
ation crack growth depending on the grain orientations
near the primary crack front. The interpretation of sim-
ulations representing delamination with the multiscale
damage model developed in this work must take into
account this variation.

5 Conclusions

This work develops a multiscale model of intergranular
damage and applies the model to delamination crack-
ing in 2195 Al-Li. The damage model represents the key
mechanics of failure over grain boundaries – the meso-
scale deformation of crystalline grains, the compatibil-
ity/equilibrium requirements on grain boundaries, and
the mesoscale mecchanism of intergranular damage. A
mesh-size independent homogenization procedure maps
damage over grain boundaries at the microscale to dam-
age on the macroscale. Projection tensors apply the

macroscale damage index to a plane in the finite ele-
ment model – an approach which essentially extends
the smeared crack model to nonlinear, large deforma-
tion materials. Example simulations verify the bicrystal
interface model and the damage projection matrices.

When applied to 2195 Al-Li, the damage model re-
produces key features of experimentally observed de-
lamination cracking:

– Delamination crack growth varies with material ori-
entation – matching the behavior of experiments on
standard arrestor, divider, and splitter configura-
tions

– In the arrestor and divider configurations, delamin-
ation cracking, represented by the multiscale dam-
age model, shields the primary crack by reducing
the stresses near the crack front. In the arrestor
configuration, delamination effectively turns the pri-
mary crack 90◦ – behavior observed in M(T) frac-
ture tests.

– By selecting orientations of the bicrystal pairs ran-
domly from an experimentally measured dataset,
the damage model reproduces the strong effect of
material texture on delamination crack growth.

The damage model can represent intergranular failure
in other materials with a similar pancake-shaped grain
structure through calibration of the macroscale and mic-
roscale constitutive models and by selecting an inter-
granular damage index to account for the mechanism of
microscale damage. With different geometric assump-
tions the model could also apply to materials with a
more complex grain geometry. For materials with hexag-
onal grains, the model might track and homogenize
damage on six planes, instead of the single plane con-
sidered for delamination in Al-Li. Such a model would
then define damage to the macroscale stress/strain re-
sponse with a multiplicative composition of the projec-
tion tensors described in Eqs. 6 and 7:

σmacro =

{
6∏
i=1

(
I6×6 −D(i)P

D,(i)
6×6

)}
σud

where D(i) is the damage index and P
D,(i)
6×6 the projec-

tion matrix for each of the six faces of the hexagonal
grains.
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A Projection matrices

This appendix lists the components of the three projection ten-
sors describe above – Pe

3×6, P
c
3×6, and PD

6×6. Each matrix is a
combination of the components of the orthogonal coordinate sys-
tem describing the interface plane/grain boundaries with normal
vector n and transverse vectors s and t. Let the components of
these vectors be:

n =
[
n1 n2 n3

]T
s =

[
s1 s2 s3

]T
t =

[
t1 t2 t3

]T
As described above, under large deformations and rotations these
vectors remain constant in the corotational configuration. The
form of the projection matrices depends on the Voigt notation

used in the finite element framework. The particular Voigt nota-
tion in this work is:

ε→
[
ε11 ε22 ε33 2ε12 2ε23 2ε13

]T
σ →

[
σ11 σ22 σ33 σ12 σ23 σ13

]T
.

The components of each projection are:

Pe
3×6 =

n1 0 0 n2 0 n3

0 n2 0 n1 n3 0
0 0 n3 0 n2 n1



Pc
3×6 = s21 s22 s23 s1s2 s2s3 s1s3
t21 t22 t23 t1t2 t2t3 t1t3
s1t1 s2t2 s3t3

1
2

(s2t1 + s1t2) 1
2

(s2t3 + s3t2) 1
2

(s3t1 + s1t3)


and

PD
6×6 =



p11 p12 p13 p14 p15 p16
p21 p22 p23 p24 p25 p26
p31 p32 p33 p34 p35 p36
p41 p42 p43 p44 p45 p46
p51 p52 p53 p54 p55 p56
p61 p62 p63 p64 p65 p66
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with:

p11 = n2
1

(
n2
1 + 2

(
s21 + t21

))
p12 = n1n2 (n1n2 + 2s1s2 + 2t1t2)

p13 = n1n3 (n1n3 + 2s1s3 + 2t1t3)

p14 = 2n1

(
n1 (s1s2 + t1t2) + n2

(
s21 + t21

)
+ n2n

2
1

)
p15 = 2n1 (n3 (s1s2 + t1t2) + n2 (s1s3 + t1t3) + n1n2n3)

p16 = 2n1

(
n1 (s1s3 + t1t3) + n3

(
s21 + t21

)
+ n3n

2
1

)
p21 = n1n2 (n1n2 + 2s1s2 + 2t1t2)

p22 = n2

(
2n2

(
s22 + t22

)
+ n3

2

)
p23 = n2n3 (n2n3 + 2s2s3 + 2t2t3)

p24 = 2n2

(
n2 (s1s2 + t1t2) + n1

(
n2
2 + s22 + t22

))
p25 = 2n2

(
n2 (s2s3 + t2t3) + n3

(
s22 + t22

)
+ n3n

2
2

)
p26 = 2n2 (n3 (s1s2 + t1t2) + n1 (n2n3 + s2s3 + t2t3))

p31 = n1n3 (n1n3 + 2s1s3 + 2t1t3)

p32 = n2n3 (n2n3 + 2s2s3 + 2t2t3)

p33 = n2
3

(
n2
3 + 2

(
s23 + t23

))
p34 = 2n3 (n2 (s1s3 + t1t3) + n1 (n2n3 + s2s3 + t2t3))

p35 = n3

(
2n3 (s2s3 + t2t3) + 2n2

(
n2
3 + s23 + t23

))
p36 = n3

(
2n3 (s1s3 + t1t3) + 2n1

(
n2
3 + s23 + t23

))
p41 = n1

(
n1 (s1s2 + t1t2) + n2

(
s21 + t21

)
+ n2n

2
1

)
p42 = n2

(
n2 (s1s2 + t1t2) + n1

(
n2
2 + s22 + t22

))
p43 = n3 (n2 (s1s3 + t1t3) + n1 (n2n3 + s2s3 + t2t3))

p44 = n2
1

(
2n2

2 + s22 + t22
)

+ 2n2n1 (s1s2 + t1t2) + n2
2

(
s21 + t21

)
p45 = n2 (n3 (s1s2 + t1t2) + n2 (s1s3 + t1t3)) +

n1

(
n2 (s2s3 + t2t3) + n3

(
s22 + t22

)
+ 2n3n

2
2

)
p46 = n2

1 (2n2n3 + s2s3 + t2t3) +

n1 (n3 (s1s2 + t1t2) + n2 (s1s3 + t1t3))

+ n2n3

(
s21 + t21

)
p51 = n1 (n3 (s1s2 + t1t2) + n2 (s1s3 + t1t3) + n1n2n3)

p52 = n2

(
n2 (s2s3 + t2t3) + n3

(
s22 + t22

)
+ n3n

2
2

)
p53 = n3

(
n3 (s2s3 + t2t3) + n2

(
n2
3 + s23 + t23

))
p54 = n2 (n3 (s1s2 + t1t2) + n2 (s1s3 + t1t3)) +

n1

(
n2 (s2s3 + t2t3) + n3

(
s22 + t22

)
+ 2n3n

2
2

)
p55 = n2

2

(
2n2

3 + s23 + t23
)

+ 2n3n2 (s2s3 + t2t3) + n2
3

(
s22 + t22

)
p56 = n3 (n3 (s1s2 + t1t2) + n2 (s1s3 + t1t3)) +

n1

(
n3 (s2s3 + t2t3) + n2

(
2n2

3 + s23 + t23
))

p61 = n1

(
n1 (s1s3 + t1t3) + n3

(
s21 + t21

)
+ n3n

2
1

)
p62 = n2 (n3 (s1s2 + t1t2) + n1 (n2n3 + s2s3 + t2t3))

p63 = n3

(
n3 (s1s3 + t1t3) + n1

(
n2
3 + s23 + t23

))
p64 = n2

1 (2n2n3 + s2s3 + t2t3) +

n1 (n3 (s1s2 + t1t2) + n2 (s1s3 + t1t3)) + n2n3

(
s21 + t21

)
p65 = n3 (n3 (s1s2 + t1t2) + n2 (s1s3 + t1t3)) +

n1

(
n3 (s2s3 + t2t3) + n2

(
2n2

3 + s23 + t23
))

p66 = n2
1

(
2n2

3 + s23 + t23
)

+ 2n3n1 (s1s3 + t1t3) + n2
3

(
s21 + t21

)
.
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